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A B S T R A C T

Rheumatoid arthritis (RA) is therapeutically challenging due to patient heterogeneity and variability. Herein we

describe a novel integration of RA synovial genome-scale transcriptomic profiling of different patient cohorts

that can be used to provide predictive insights on drug responses. A normalized compendium consisting of 256

RA synovial samples that cover an intersection of 11,769 genes from 11 datasets was build and compared with

similar datasets derived from OA patients and healthy controls. Differentially expression genes (DEGs) that were

identified in three independent methods were fed into functional network analysis, with subsequent grouping of

the samples based on a non-negative matrix factorization method. RA-relevant pathway activation scores and

four machine learning classification techniques supported the generation of a predictive model of patient

treatment response. We identified 876 up-regulated DEGs including 24 known genetic risk factors and 8 drug

targets. DEG-based subgrouping revealed 3 distinct RA patient clusters with distinct activity signatures for RA-

relevant pathways. In the case of infliximab, we constructed a classifier of drug response that was highly ac-

curate with an AUC/AUPR of 0.92/0.86. The most informative pathways in achieving this performance were the

NFκB-, FcεRI- TCR-, and TNF signaling pathways. Similarly, the expression of the HMMR, PRPF4B, EVI2A,

RAB27A, MALT1, SNX6, and IFIH1 genes contributed in predicting the patient outcome. Construction and

analysis of normalized synovial transcriptomic compendia can provide useful insights for understanding RA-

related pathway involvement and drug responses for individual patients.

1. Introduction

Rheumatoid arthritis (RA) is a complex autoimmune disease invol-

ving a multitude of environmental and genetic factors that exhibit

nonlinear dynamic interactions [1]. The disease is characterized by

chronic inflammation of the synovium, which results in irreversible

damage to the bone tissue over time, leading to pain and joint function

impairment. Severity and clinical course of the disease is highly vari-

able across the different patients and hence difficult to predict [1].

Despite the success of tumor necrosis factor (TNF) inhibitors, over 30%

of patients do not respond fully to therapy [2]. Moreover, a consider-

able subset of the patients who showed initial good response experience

[2]. A personalized treatment that provides the best possible drug

combination for a patient is likely to improve our ability to treat RA and

avoid patient relapse. Despite the fact that RA pathophysiology is ac-

tively researched, we still have partial understanding regarding the

mechanistic basis of disease progression, which is critical to administer

personalized and precise care.

In RA, gene expression profiling has been used to gain insights re-

garding pathogenesis and drug response [3]. Unfortunately, these stu-

dies have been conducted in unrelated small sample size cohorts, that

exhibit high heterogeneity (sex, age, and ethnicity), differences in

technical protocols, microarray platform, and data analysis methods,

thus hindering a comprehensive analysis across all available datasets. In
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addition, most studies have collected samples from whole blood or

peripheral blood mononuclear cells, which are easier to acquire but

have a limited capacity to adequately reflect local joint inflammation

[4–6].

In this study, our aim is to elucidate the various transcriptional and

signaling signatures of RA by performing a comprehensive meta-ana-

lysis of the publicly available datasets. We focus on the American

College of Rheumatology (ACR) classification criteria and analyze ex-

clusively synovial tissue samples to avoid the high false discovery rates

coming from blood samples. We have applied several preprocessing and

normalization steps to create a cohesive, homogenized compendium of

genome-wide gene expression signatures for downstream analysis. We

used this compendium to separate expression-driven subgroup, under-

stand the key cellular components in each group and then use genes and

pathways with high information value that we have identified to create

predictive models for drug responsiveness.

2. Methods

2.1. Systematic search and data collection

We used the keywords “Rheumatoid Arthritis (RA)”, “Synovium or

synovial tissue”, “Transcriptomics or microarray”, “Dataset” in Google

Scholar and PubMed to find relevant publications to the topic of sy-

novial gene signatures of patients with rheumatoid arthritis (Fig. 1). We

retrieved all publications that used the American College of

Rheumatology (ACR) classification criteria for diagnosis of RA [7] and

relevant criteria for OA [8] (20 studies in total). From the resulting set,

we removed entries that had been duplicated and selected datasets

measuring over 10,000 genes to secure the largest size of genes and

samples. Since there was a trade-off between the number of studies to

include and the number of genes that are within the intersection from

all datasets, we optimized the product of the two by selecting the point

where these two trends cross (Supplementary Fig. S1). The final RA

sample count was 256, the osteoarthritis (OA) count 41, and 36 normal

(NC) samples were included as controls. Clinical characteristics of the

RA patients were summarized in Supplementary Table 1. Ultimately,

the final RA compendium was constructed out of 11 studies with a total

of 333 samples, one per patient, covering 22,721 genes total (common

core of 11,769 genes).

2.2. Data normalization and removal of batch effects

For one-channel arrays, the image data was first imported and then

the Robust Multi-array Average (RMA) method was applied for a set of

replicates for background correction, normalization, probe-set sum-

marization. For dual-channel arrays, the image data were imported and

background correction was performed using normexp as it was shown

to outperform other methods. Red and green channels were separated

and quantile-normalized for each set of replicates. The vectors for the

matrices were normalized using the quantile normalization method.

Residual technical batch effects arising due to heterogeneous data
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Fig. 1. Overview of the data processing steps. (A) Twenty studies

maximally covering 20,511 genes were retrieved from the literature.

(B) Selected were 11 datasets adequate to integrated analysis, which

included 256 RA, 41 OA, and 36 NC samples covering 11,769 gene.

(C) The merged dataset was normalized using quantile method and its

batch effect was corrected. (D) DEG of RA compared to OA or NC were

obtained using three methods, eBayes, SAM, and RP. Intersection of

three DEG sets was chosen as significant DEG. The number of DEG was

2762 in RA versus OA and 3087 in RA versus NC. (E) A list of stra-

tegies for integrated analysis. (Abbreviation: RA, rheumatoid arthritis;

OA, osteoarthritis; NC, normal controls; DEG, differentially expressed

genes; eBayes, empirical Bayes; SAM, significance analysis of micro-

array; RP, rank products).

K.-J. Kim, et al.



integration were corrected using the ComBat function within the em-

pirical Bayes package. Quality assurance and distribution bias was

evaluated by Principal Component Analysis (Supplementary Fig. S2).

2.3. The RA compendium

After preprocessing, the gene expression profiles have a significant

reduction of systematic, dataset-specific bias in comparison with the

same dataset before normalization and batch correction

(Supplementary Fig. S2). The resulting compendium has a gene size of

11,769 in 333 samples, including 256 RA patients, 41 OA patients, and

36 normal controls. In 105 of the RA samples, synovial tissue sampling

was conducted before the start of certain drug: 11 for adalimumab, 62

for infliximab, 8 for methotrexate, 12 for rituximab, and 12 for tocili-

zumab. For these patients, assessment of disease activity and response

was performed per the EULAR response criteria [9] 12–16 weeks after

initiation of therapy: 32 were good, 47 were moderate, and 26 were

poor responders.

2.4. Filtering of differentially expressed genes

In order to identify the differentially expressed genes (DEGs), we

employed three widely-used methods: (a) an empirical Bayesian

method using the Benjamini and Hochberg procedure with a sig-

nificance threshold at an adjusted p-value < .05; (b) the Significance

Analysis of Microarray (SAM) method, with a significance threshold of

false discovery rate (FDR) < 0.05; (c) the Rank Products (RP) method

with a significance threshold set at percentage of false prediction

pfp < 0.05. The resulting list of DEGs is the intersection of the three

individual DEGs sets for each method to minimize the FDR statistic.

2.5. Functional enrichment analysis

We performed functional enrichment analysis focusing on the up-

regulated DEGs using the Database for Annotation, Visualization, and

Integrated Discovery (DAVID) software [10]. Terms were regarded

significant if the p-value (EASE score) is lower than 0.05, the enrich-

ment score higher than 1.3, and the fold enrichment was larger than

1.5.

2.6. Gene set enrichment analysis

Gene set enrichment analysis (GSEA) analysis was carried out using

the GSEA software from the Broad Institute to assess the over-

representation of RA-related gene sets [11,12]. The enrichment results

were visualized with the Enrichment Map format, where nodes re-

present gene-sets and weighted links between the nodes represent an

overlap score depending on the number of genes two gene-sets share

(Jaccard coefficient) [13]. To intuitively identify redundancies between

gene sets, the nodes were connected if their contents overlap by > 25%.

Clusters map to one or more functionally enriched groups, which were

manually circled and assigned a label.

2.7. Construction of protein-protein interaction network

To assess the interconnectivity of DEGs in the RA synovium samples,

we constructed a protein-protein network based on the interaction data

obtained from public databases including BIOGRID [14], HPRD [15],

IntAct [16], Reactome [17], and STRING [18]. In the network, nodes

and edges represent genes and functional or physical relationships be-

tween them, respectively. Graph theory concepts such as degree, clo-

seness, and betweenness were employed to assess the topology of this

network. Hub molecules were defined as the shared genes in top 10%

with the highest rank in each arm of the three centrality parameters

[19].

2.8. Non-negative matrix factorization and determination of the optimal

number of clusters

To classify the RA patients into subgroups based on their molecular

signatures, we used the non-negative matrix factorization (NMF)

method. NMF clustering is a powerful unsupervised approach to iden-

tify the disease subtype or patient subgroup and discover biologically

meaningful molecular pattern [20,21]. We applied the consensus NMF

clustering method and initialized 100 times for each rank k (range from

2 to 6), where k was a presumed number of subtypes in the dataset. For

each k, 100 matrix factorizations were used to classify each sample 100

times. The consensus matrix was used to assess how consistently

sample-pairs cluster together. We then computed the cophenetic coef-

ficients and silhouette scores for each k, to quantitatively assess global

clustering robustness across the consensus matrix. The maximum peak

of the cophenetic coefficient and silhouette score plots determined the

optimal number of clusters [20]. To confirm unsupervised clustering

results, we used t-distributed stochastic neighborhood embedding (t-

SNE) [22], a powerful dimensionality reduction method. The t-SNE

method captures the variance in the data by attempting to preserve the

distances between data points from high to low dimensions without any

prior assumptions about the data distribution.

2.9. Scoring of pathway activation

To quantify certain biological pathway activity, we calculated the

gene expression z-scores [21,23]. Briefly, a Z-score is defined as the

difference between the error-weighted mean of the expression values of

the genes in each pathway and the error-weighted mean of all genes in a

sample after normalization. BCR-, chemokine-, Jack-STAT-, MAPK-,

NFκB-, p53-, PI3K-AKT-, RIG-I-like receptor-, Fc ε RI-, TCR-, TGFβ-,

TLR-, TNF-, VEGF-, and Wnt signaling pathways and their gene sets

were imported from Kyoto Encyclopedia of Genes and Genomes (KEGG)

database [24] and IFN type I- and type II signaling pathways and their

gene sets referred to Reactome database [17]. Z-scores were computed

using each pathway in the signature collection for each of the samples,

resulting in a matrix of pathway activation scores.

2.10. Supervised learning analyses for the prediction of drug responsiveness

We used Naïve Bayes (NB), Decision Trees (DT), k-Nearest-

Neighbors (KNN), and Support Vector Machines (SVM) to create drug

responsiveness predictors [25,26]. Each binary SVM was built using

Gaussian Radial Basis Function (RBF) kernel and the Sigma hy-

perparameter was determined from the estimation based upon the 0.1

and 0.9 quantiles of the samples. For soft margins, the C parameter that

achieved the best performance was in the range of 2−4 to 27. For KNN,

the k parameter was tuned in the range 2 to 20. All tuning hy-

perparameters were separately determined for each bootstrapped

training dataset.

To determine the optimal feature set that enables distinguishing

‘good’ from ‘not good’ responders with the highest accuracy according

to the EULAR response criteria [9], we employed the wrapper feature

selection method [26]. The wrapper method uses the classifier as a

black box to rank different subsets of the features according to their

predictive power. In the wrapper method, a feature set is fed to the

classifier and its performance is scored and the feature set with the

highest rank is selected as the optimal feature set. The predictive power

of each predictor was assessed through Receiver-Operator Character-

istics (ROC) and Precision-Recall (PR) curve [27]. Data was separated

into independent training and test sets in a three-to-one sample-size

ratio in a way of stratified random sampling. To make up for small

sample size and minimize the error, we constructed the pool of re-

sampled dataset by applying bootstrapping with 1000 iterations and

subsequently applying a stratified 10-fold cross-validation (CV) for each

bootstrapped dataset [25,26]. Tenfold CV measures the prediction
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performance in a self-consistent way by systematically leaving out part

of the dataset during the training process and testing against those left-

out subset of samples. Compared to the test on independent dataset, CV

has less bias and better predictive and generalization power. The pre-

dictive ability of the models generated from all the approaches was

tested by performing the CV test at all the ten locations under study.

Given the unequal numbers of trials in each class, balanced accuracy

formula was employed to calculate the accuracy [28]. The baseline is

estimated by random expectation based on the pre-determined ratio of

each condition. In case of infliximab, a probability of 0.29 (18/62) for a

“good” and 0.71 (44/62) for a “not good” responder was applied.

2.11. Statistical analysis

For continuous distributed data, between-group comparisons were

performed using the one-way ANOVA, unpaired t-test or Mann-Whitney

U test. Categorical or dichotomous variables were compared using the

chi-squared test or Fisher's exact test. To investigate the difference of

pathway activation score across the subgroups, we fitted the one-way

ANOVA model using logistic regression. All analyses were conducted in

R (The R Project for Statistical Computing, www.r-project.org) and R

packages used in the analysis and their references were summarized in

the Supplementary Table S3.

3. Results

3.1. The RA transcriptomics compendium

To get a list of RA-related DEGs, gene expression profiles of RA

patients were compared with samples from the OA and NC groups. We

identified 2762 DEGs for RA versus OA, and 3087 DEGs for RA versus

NC (Fig. 1). Distribution of DEGs was assessed after the DEGs were

divided into up- and down-regulated groups (Fig. 2A). The number of

up-regulated DEGs was 1486 for RA versus OA and 1774 for RA versus

NC. The intersection between two up-regulated DEG sets was 876,

which we considered as RA-unique (Fig. 2A and supplementary File

S1).

3.2. Enriched biological processes and protein-to-protein interaction

network

We performed a gene-set enrichment analysis [11,12] where 206

gene ontology processes were identified (Fig. 2B and Supplementary

Fig. S3). As expected, immune-related biological processes including

adaptive and innate immune response, T and B cell activation and re-

sponse, and cytokine-related responses, were enriched. These occupied

the main positions in the network and closely connected to each other.

Among cytokine-related processes, interferon-β (IFN-β), interferon-γ

(IFN-γ), interleukin (IL)-4, IL-10, IL-12, IL-17, toll-like receptor (TLR),

and TNF-related processes stood out as being substantially more en-

riched.

Interestingly, several biological processes associated with viral in-

vasion and defense response against viruses were over-represented

within the up-regulated DEGs (Supplementary Fig. S4). Metabolic

processes such as calcium ion regulation and protein synthesis/trans-

portation were also enriched (all P < .01). Analysis of the down-

regulated genes depict an over-representation of processes related to

cell growth and transcription, as well as signal transduction of specific

pathways such as p38MAPK (Supplementary Table S4).

Identification of central attractors in the gene and protein network

can provide targets for further experimentation and/or drug discovery.

For this reason, we constructed the protein-to-protein interaction net-

work of RA (Fig. 2C). We identified 3563 interactions among the 876

DEGs. Thirty-one of DEGs were overlapped with RA genetic suscept-

ibility loci previously discovered [29] (Supplementary Fig. S5) and a

total of 56 genes were ranked as hub molecules based on the centrality

analysis. The CD2, PTPRC (protein tyrosine phosphatase, receptor type

C, also known as CD45), and PRKCQ (protein kinase C theta) were RA-

susceptible genes having hub position in the network and products of

these genes are involved in signal transduction of T cells. Eight genes

including primary targets (JAK2, SYK, CTLA4, MS4A1) and counterpart

receptor molecules (TNFRSF14, TNFRSF17, TNFRSF18, and IL21R) of

cytokines targeted by the drugs currently in use or under clinical trial or

development are also differentially expressed [30,31]. Interestingly, the

targets of small molecule therapeutics, JAK2 and SYK are central hub

nodes, in contrast to the targets of biologic agents, such as CTLA4,

MS4A1 (also known as CD20), TNFRSF14, TNFRSF17, and TNFRSF18.

We found 219 RA-associated genes from the DisGeNet database [32],

which are genes and variants having an important role in RA patho-

physiology. Forty-six of them were overlapped with the RA synovial

DEG. To assess topological proximity between RA-associated genes and

drug targets in PPI network of synovial DEGs, the shortest distance

between nodes was calculated (Supplementary Fig. S6). Mean distance

of JAK2 and SYK was 2.11 ± 0.69 S.D. and 2.09 ± 0.68, respectively,

and significantly shorter than those of other target molecules (range,

2.65–3.39) (in all cases P < .05).

3.3. Identification and characterization of molecular subgroups

Next, we assessed whether RA patients can be categories in sub-

groups based on their expression profiles through consensus non-ne-

gative matrix factorization (NMF) clustering [20]. To identify the op-

timal number of clusters and to assess robustness of the clustering

result, we computed the cophenetic coefficient and silhouette score for

different numbers of clusters from 2 to 6, where we found that 3

clusters are the optimal representation of the data (Fig. 3A, Supple-

mentary Fig. S7, and Supplementary Methods). Segregation of RA

subgroups was also reproduced by t-distributed stochastic neighbor-

hood embedding (t-SNE) and principal component analysis (PCA)

(Fig. 3B and C). To understand the differences among the three clusters,

we curated the 17 representative RA-relevant signaling pathways from

the result of gene-set enrichment analysis (Fig. 2B) based on the lit-

eratures [31,33–35] and analyzed the activation of individual path-

ways. As shown in the chord diagram, these pathways are strongly

connected, with only TGFβ-, P53-, and Wnt signaling pathways more

isolated than others (less shared DEGs). Especially TGFβ- and Wnt, have

an opposite trend in their DEG expression (higher in cluster 1, mid in

cluster 2 and low in cluster 3), which is the opposite of the trend we

observe in most of the other pathways (Fig. 4 and Supplementary Fig.

S8). P53 signaling pathways shared fewer genes with other pathways

but strongly correlated with BCR-, chemokine-, TCR-, TLR-, and TNF

signaling pathways.

While the activation scores of all pathways exhibited significant

difference across the various clusters, all clusters exhibited one of the

two trends in a statistically significant manner (P < .05 in all cases)

and in accordance with the observation through DEG-driven enrich-

ment (all cases except TNF). Compared with RA cluster 2 and 3, RA

cluster 1 had moderate activation scores for most of the proin-

flammatory signaling pathways but high for PI3K-AKT-, TGFβ- and Wnt

signaling pathways, which are principally involved in synovial pro-

liferation and tissue remodeling [36]. RA cluster 2 and 3 showed

comparable activities for most of the proinflammatory pathways. More

active in RA cluster 2 were the P53- and PI3K-AKT signaling pathways,

which were reported to play a role in regulating survival of synovio-

cytes or macrophages [37,38]. In RA cluster 3, TCR-, Jak-STAT-, and

NFκB signaling pathways were more activated and it is noteworthy that

IFN signaling pathways were most scored. Cellular processes affected

by these pathways are in agreement with the DEG-driven enriched gene

ontology (GO) terms in each cluster (Supplementary Fig. S9). This re-

sult indicates that there exist RA subgroups representing a distinct

mode of inflammation deflected toward a certain combination of sig-

naling pathways (Supplementary Table S5).
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3.4. Clinical implication of the 3 molecular subgroups

Next, we examined the relationship between identified 3 subgroups

and the pertinent clinical features based on the provided information.

There was no difference in gender ratio, age distribution, and tissue

sampling method across the subgroups (P > .10 in all cases, see

Supplementary Fig. S10). The frequency and distribution of 3 sub-

groups by seropositivity was estimated on basis of the information

available in the 9 datasets (233 samples). Cluster 2 and 3 were pre-

dominant in the seropositive, while cluster 1 prevailed in the ser-

onegative (P < .001) (Fig. 5A). Because data on the disease duration

and activity were not fully provided for each sample, we compared two

distinctively opposing datasets from compendium: the first (GSE45867)

includes naïve, untreated RA patients with disease duration of < 1 year,

moderate disease activity and with arthroscopic needle biopsy per-

formed before methotrexate or tocilizumab therapy [39]. The second

(GSE21537) is a cohort of the long-standing RA patients with high

disease activity who had failed at least two DMARDs (including meth-

otrexate) and did arthroscopic needle biopsy before infliximab therapy

[40]. Disease duration and activity were significantly longer and higher

in the latter dataset (all P < .001) while there was no difference in age,

gender, and RF positive between two datasets (all P > .10).

Distribution of 3 subgroups did not differ between two datasets

(P= .754) (Fig. 5B), indicating gene expression pattern by 3 subgroups

would be an intrinsic characteristic irrespective of disease duration and

activity.

3.5. Toward a predictor of drug response

For 105 RA samples that we had drug effectiveness data, we tested

the hypothesis that there is an association between drug responsiveness

and cluster membership. Out of the 5 drugs that we had data on

(adalimumab, infliximab, methotrexate, rituximab, and tocilizumab)

we were not able to identify any such association (Supplementary Fig.

S11). Cluster 1 patients had an encouraging response to tocilizumab but

at a low statistical significance level (P = .082). In addition to the in-

tricacy of the pertinent pathways, the small size of samples treated by

the specific drug, and their potential heterogeneity make the associa-

tion between drug responsiveness and RA clusters difficult.

Since the differential expression of genes and pathways is at a

higher resolution than general clustering signatures, we tested whether

drug response can be predicted by using such features. We focused on

the patients that were treated with infliximab due to the larger sample

size (n = 62). To test this hypothesis, we applied outcome to a binary

Fig. 2. Differentially expressed genes and their functional network. (A) Venn diagram showing the overlap of up- and down-regulated DEG between RA versus OA

and RA versus NC. (B) Gene-Set enrichment map for up-regulated DEG. Nodes represent GO-termed gene-sets. Their color intensity and size is proportional to the

enrichment significance and the gene size, respectively. Edge thickness represents the degree of overlap between gene sets and only edges with a Jaccard coefficient

larger than 0.25 were visualized. Clusters of functionally related gene-sets were manually curated based on the GO parent-child hierarchy and assigned a label. (C)

Protein-Protein interaction network of up-regulated DEG. Red and blue nodes indicate the known RA-susceptible genes and drug target molecules, respectively. Drug

targets were defined subject to the targets of drugs currently in use or under clinical trial and development. Yellow nodes correspond to the hub molecules, which are

determined as the shared genes in top 10% with the highest rank in each arm of three centrality parameters; degree, closeness, and betweenness. Orange, green, and

purple colored-nodes are the overlapped between red and yellow, yellow and blue, and red and blue ones, respectively. Right-side inset box is the schematic diagram

of the interesting genes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Identification of novel RA subgroups according to synovial signatures. (A) Reordered consensus matrices on RA compendium. The samples were clustered

using average linkage and 1-correlation distances. Deep-red color indicates perfect agreement of the solution, whilst blue color indicates no agreement (Right-side

color bar). Basis and consensus represent clusters based on the basis and consensus matrices, respectively. The silhouette score is a similarity measure within its own

cluster compared to other clusters. (B) t-SNE and (C) PCA reduces the dimensions of a multivariate dataset. Each data point is assigned a location in a two-

dimensional map to illustrate potential clusters of neighboring samples, which contain similar gene expression patterns. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)
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classification (labels of “good” and “not good” responder according to

the EULAR response criteria [9]) and tried two approaches: pathway-

driven and DEG-driven models. Note that PCA analysis does not reveal

separating distributions between the “good” and “not good” responders

both for pathway activation score and DEG values (Supplementary Fig.

S12).

As features, we used the 17 pathways that are represented by con-

tinuous variables through their activation scores (refer to the pathway

activation score for each pathway in the Supplementary File S2). To

reduce the number of dimensions we performed feature selection

through recursive elimination (Supplementary Table S6). Based on

those results made a predictive model using 4 supervised machine

Fig. 4. Pathway activation scores according to RA subgroups. Chord diagram shows interrelationship among pathways and link thickness is proportional to the

overlap between two pathways, calculated using the Jaccard coefficients. Turkey boxplots reveals pathway activation scores across the RA subgroups and ANOVA

test was used to analyze the differences among groups. *, P < .05; **, P < .01; ***, P < .001.

Fig. 5. (A) Frequency and distribution of 3 subgroups by seropositivity. Estimation was on basis of the information available in the 9 datasets (233 samples). (B)

Frequency and distribution of 3 subgroups by the two-opposing datasets. To examine the association of disease duration and activity, two distinctively opposing

datasets were selected from the compendium for comparison. GSE45867 is a group of samples with shorter duration and moderate disease activity and GSE21537 is

with longer duration and high disease activity. The number of samples assigned by subgroups and characteristics of the dataset was summarized. Distribution of 3

subgroups did not differ between two datasets (P= .754).

K.-J. Kim, et al.



learning methods (NB, DT, KNN, and SVM) for selected key pathway

scores and calculated the performance. All models outperformed the

baseline (all P < .001) (Fig. 6A, left plot) and SVM, the best per-

forming model, had an average performance AUC (area-under-curve of

ROC/AUPR (AUC of PR)) of 0.87/0.78 (all P < .001) (Fig. 6A, middle

and right plots). The selected key predictors for SVM model were

NFκB-, FcεRI-, TCR-, and TNF signaling pathways. Next, models based

on expression values of DEG were fit in order to sort out the informative

genes and compare their performance with pathway-driven models.

DEG-driven models showed superior performance as compared with

pathway-driven models (Fig. 6B, left plot). The AUC of the ROC curves

exceeds 0.85 (Fig. 6B, middle and right plots). SVM showed the best

performance AUC/AUPR of 0.92/0.86 and with the HMMR, PRPF4B,

EVI2A, RAB27A, MALT1, SNX6, and IFIH1 genes as features. The ex-

pression of these genes provide a distinct signature between two dif-

ferent outcomes (P < .05 in all cases, see Supplementary Fig. S13).

4. Discussion

Here, we built the largest RA compendium made by synovial tran-

scriptomes. DEGs extracted from this compendium encompassed the

susceptible genes and target molecules. Their topology in the network

has opened new possibilities to elucidate biological roles and offer a cue

for existing clinical questions. Unbiased cluster analysis of RA com-

pendium resulted in meaningful categories of RA patients with distinct

activity for relevant pathways. The pathway-based analysis allowed

refinement in our understanding of RA subgroups and it was also fea-

sible to construct pathway- or DEG-driven predictive model for in-

tended treatment by machine learning methods.

Synovial tissues are considerably more difficult samples to obtain,

as they are obtained during joint replacement surgery, synovectomy or

by arthroscopy at 4–8 sites of the affected joint. However, they are more

suitable to understand the mechanism and response to RA, since blood-

derived samples are a distant and hence more noisy proxy to the dis-

ease, with known quality issues [4–6]. Moreover, to refine the RA-un-

ique genes, we compared RA samples with two control sets (OA and NC

groups) and adopted the DEGs shared by three independent methods.

We found that 24 of the DEGs are the known RA-associated genetic loci

and take a central position in the synovial network. Since functional

implications of risk allele were often obscure, it would be helpful to

elucidate the biological mechanisms in which risk alleles operate.

STAT1, a transcription factor downstream of IFN signaling pathway,

highlighted as a key molecule in the previous reports [41,42], was

found to be one of the hub genes. Other hub genes, such as JAK2, SYK,

and BTK are small molecules that have increasingly drawn attention as

novel therapeutic targets following the cytokine-targeting biologics

[31]. In contrast, molecules such as TNF receptor molecules, CTLA4,

IL6R, and MS4A1 were located at the functional periphery of the net-

work although drugs against these molecules are widely used in clinical

practice. Moreover, these molecules were placed farther from RA-as-

sociated genes than JAK2 and SYK in the network, inferring part of

their less potent efficacy in active RA. This was in good harmony with a

recent clinical trial that baricitinib, an inhibitor of the Janus kinases

JAK1 and JAK2, showed a stronger therapeutic effect as compared with

ADLM, a TNF inhibitor [43].

Biological processes and pathways identified from RA compendium

show what is happening in the inflamed synovium of RA and are in

good line with the previous studies [5,41,44]. It is worthy of note that

processes concerning viral cycle and anti-viral response were found to

be enriched. This could be the internal process analogous to or the

vestige of viral infection such as Chikungunya virus [45,46]. A series of

studies pointed out activation of IFN-related gene signatures in a subset

of RA patients and its substantial similarity to viral infection

[5,41,44,46–48] and one reported that the type I IFN signature nega-

tively predicts the clinical response to rituximab treatment in patients

with RA [47]. Here, our results suggest that such a probable link be-

tween the IFN signature and the anti-viral response may exist [46].

Interestingly, we were able to identify three distinct subgroups

through NMF analysis of the RA compendium and they differed in ac-

tivation level of RA-relevant signaling pathways [20,21]. Various

combinations of molecular perturbations might converge to dysregu-

lation of common pathways and lead to the similar phenotype [49].

Since combinations of genomic perturbations are variable across the

patients, pathway- or module-based approaches are desirable for a

Fig. 6. Predictive models and their performance. (a) Pathway-driven models. (b) DEG-driven models. (Left plot) The training and testing balanced accuracy for each

classifier as compared with the baseline. All models outperformed the baseline (all P < .001) and the performance of the trained models was significantly com-

promised in testing sets (all P < .001). (Middle and right plots) Averaged ROC and PR curves showing the performance of each classifier.
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better understanding of complex inflammatory disease like RA. We

looked at the enriched pathways derived from DEGs, which were

commensurate with the pathway activation scores calculated from the

whole gene list in the compendium. The RA cluster 1 was weighted

toward signals regarding synovial proliferation and tissue remodeling

(PI3K-AKT-, TGFβ- and Wnt signaling pathways) [36]. RA clusters 2

and 3 showed a strong disposition for proinflammatory signaling

pathways (Chemokine-, TNF-, TLR- and VEGF signaling pathways).

Apoptosis-related pathways (P53- and PI3K-AKT signaling pathway)

were much prominent in RA cluster 2 [37,38], while BCR-, Jak-STAT-,

NFκB-, and TCR signaling pathways were stronger in RA cluster 3. It is

known that synoviocytes are the main culprit of invasive synovium and

quantitative and qualitative activities of synovial macrophage reflect

therapeutic efficacy [50,51]. They add to the cellular resistance to

apoptosis and increase of the potential for proliferation, hence they

contribute to the progression and perpetuation of destructive joint in-

flammation. Therefore, we speculate that an aggressive suppression of

pro-inflammatory signals would be better pertinent to RA cluster 3,

while therapeutic strategies to control propagation and survival of sy-

noviocytes and macrophages together with anti-inflammatory treat-

ment should be considered in RA cluster 1 and 2 (Supplementary Table

S5) [52]. This insight, together with the candidate gene targets for drug

development that we have identified in each cluster, may provide good

starting points for delivering precision and personalized treatment.

Machine learning has become ubiquitous and indispensable for

solving complex problems in most sciences [53]. Since the problem of

unresolved heterogeneity is prevalent to medicine, the same methods

are expected to open up vast new possibilities in medicine and actively

employed in a variety of clinical research [53]. We tried to make a

predictive model for 62 samples that were obtained from the synovial

tissue of RA patients before administration of IFXM. Because key fea-

tures are informative for predicting the outcome rather than being di-

rectly implicated in the major pathways or usual suspects related to the

RA synovium, they could be different depending on drugs and models.

The fact that we achieved high performance scores in RA response

prediction from mining the RA compendium, despite this was not at-

tainable through individual statistical techniques in the past [40], ar-

gues that similar techniques can guide us to narrow choices for more

effective drugs. Interestingly, DEG-driven models outperformed models

that were relying on pathways as features. Among 7 featured genes in

SVM model, HMMR (Hyaluronan-mediated motility receptor, also

known as RHAMM) exacerbated collagen-induced arthritis by sup-

porting cell migration and up-regulating genes involved with in-

flammation [54] and MATL1 (Mucosa associated lymphoid tissue

lymphoma translocation gene 1) was recently identified to play a cru-

cial role in the pathogenesis of RA as MATL1-deficient mice were

completely resistant to collage-induced arthritis [55]. Direct connection

to RA was not revealed for the rest of the identified informative genes

so far and it remains to be investigated how and why these features are

indicative of drug response.

There are some limitations to be addressed in this study. First, re-

moval of batch effects is not ideal which adds to the noise in the

compendium. Second, we did not fully address the association of RA

subgroup with clinical factors including age, sex, disease duration, and

antibodies against anti-cyclic citrullinated protein due to lack of com-

plete annotation for each RA sample. In addition, the compendium that

we constructed here had an inherit heterogeneity due to different tissue

sources (joints sampled). Third, a limited number of samples were

treated with other drugs except for infliximab precluded us from

making a predictive model. In general, more meta-data would be de-

sired, although this is to be expected as these studies were performed in

different clinical environments, with different procedures and goals,

which did not include their aggregation to a single compendium and

application of advanced machine learning techniques. We believe that

with the recent efforts to support medical informatics standards and the

democratization of genome-wide transcriptional profiling for arthritis

patients will lead to cohesive datasets, which will in turn result to more

accurate and innovative insights with the application of techniques si-

milar to those described here.
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